Implemented basic algorithm to calculate SHA-256

This commit is contained in:
_N0x 2024-10-26 03:27:46 +02:00
parent faffeeb624
commit 723515a429
2 changed files with 162 additions and 1 deletions

View File

@ -1,3 +1,18 @@
mod sha256;
fn main() {
println!("Hello, world!");
println!("Input is: \"\"");
println!("Expected is: 0xe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");
sha256::sha256("");
println!("##########################################");
println!("Input is: \"abc\"");
println!("Expected is: 0xba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad");
sha256::sha256("abc");
println!("##########################################");
println!("Input is: \"The quick brown fox jumps over the lazy dog\"");
println!("Expected is: 0xd7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592");
sha256::sha256("The quick brown fox jumps over the lazy dog");
}

146
src/sha256.rs Normal file
View File

@ -0,0 +1,146 @@
use std::str;
//////////// HELPER FUNCTIONS /////////////
fn ch(x: u32, y: u32, z: u32) -> u32 {
let ret: u32 = (x & y) ^ (!x & z);
return ret;
}
fn maj(x: u32, y: u32, z: u32) -> u32 {
let ret: u32 = (x & y) ^ (x & z) ^ (y & z);
return ret;
}
fn bsig0(x: u32) -> u32 {
let ret: u32 = x.rotate_right(2) ^ x.rotate_right(13) ^ x.rotate_right(22);
return ret;
}
fn bsig1(x: u32) -> u32 {
let ret: u32 = x.rotate_right(6) ^ x.rotate_right(11) ^ x.rotate_right(25);
return ret;
}
fn ssig0(x: u32) -> u32 {
let ret: u32 = x.rotate_right(7) ^ x.rotate_right(18) ^ (x >> 3);
return ret;
}
fn ssig1(x: u32) -> u32 {
let ret: u32 = x.rotate_right(17) ^ x.rotate_right(19) ^ (x >> 10);
return ret;
}
fn pad_message(message: &str) -> Vec<u32> {
let mut msg_bytes = message.as_bytes().to_vec();
let l = (msg_bytes.len() as u64) * 8;
msg_bytes.push(0x80);
let k = (448u64.wrapping_sub((l + 8) % 512)) % 512;
let k_bytes = k / 8;
let padding = vec![0u8; k_bytes as usize];
msg_bytes.extend(padding);
msg_bytes.extend(&l.to_be_bytes());
let mut u32_vec = Vec::with_capacity(msg_bytes.len() / 4); // Allocate the right size for u32 vector
for chunk in msg_bytes.chunks(4) {
let value = (chunk[0] as u32) << 24
| (chunk[1] as u32) << 16
| (chunk[2] as u32) << 8
| (chunk[3] as u32);
u32_vec.push(value);
}
return u32_vec;
}
//////////// END HELPER FUNCTIONS /////////////
pub fn sha256(message: &str) {
const K: [u32; 64] = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4,
0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f,
0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7,
0xc67178f2,
];
let mut hash: [u32; 8] = [
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab,
0x5be0cd19,
];
let msg_vec = pad_message(message);
for chunk in msg_vec.chunks(64) {
let mut w: Vec<u32> = Vec::with_capacity(64);
let mut t1: u32;
let mut t2: u32;
for t in 0..16 {
w.push(chunk[t]);
}
for t in 16..64 {
w.push(
ssig1(w[t - 2])
.wrapping_add(w[t - 7])
.wrapping_add(ssig0(w[t - 15]))
.wrapping_add(w[t - 16]),
);
}
let mut a = hash[0];
let mut b = hash[1];
let mut c = hash[2];
let mut d = hash[3];
let mut e = hash[4];
let mut f = hash[5];
let mut g = hash[6];
let mut h = hash[7];
for t in 0..64 {
t1 = h
.wrapping_add(bsig1(e))
.wrapping_add(ch(e, f, g))
.wrapping_add(K[t])
.wrapping_add(w[t]);
t2 = bsig0(a).wrapping_add(maj(a, b, c));
h = g;
g = f;
f = e;
e = d.wrapping_add(t1);
d = c;
c = b;
b = a;
a = t1.wrapping_add(t2);
}
hash[0] = a.wrapping_add(hash[0]);
hash[1] = b.wrapping_add(hash[1]);
hash[2] = c.wrapping_add(hash[2]);
hash[3] = d.wrapping_add(hash[3]);
hash[4] = e.wrapping_add(hash[4]);
hash[5] = f.wrapping_add(hash[5]);
hash[6] = g.wrapping_add(hash[6]);
hash[7] = h.wrapping_add(hash[7]);
}
let sha256_str: String = hash
.iter()
.map(|&num| format!("{:X}", num)) // Use {:X} for uppercase hex, or {:x} for lowercase
.collect::<Vec<String>>() // Collect into a vector of strings
.join(""); // Join with a space or any separator you prefer
println!("Result Hash is: 0x{}", sha256_str);
}