Compare commits

..

No commits in common. "master" and "2021-10-21" have entirely different histories.

20 changed files with 134 additions and 1538 deletions

View File

@ -1,402 +0,0 @@
//================================================================================================================================
// Includes
//================================================================================================================================
#include <avr/pgmspace.h>
#include <stdio.h>
#include <stdlib.h>
#include "string.h"
#include "CLI.h"
#include "Taster.h"
#include "Timer.h"
#include "Led.h"
#include "adc.h"
#include "rotaryEncoder.h"
//================================================================================================================================
// defines
//================================================================================================================================
#define COUNT_COMMANDS ( sizeof(command) / sizeof(command[0]) )
#define CHAR_DEL 0x7F
#define CHAR_BACKSPACE 0x08
#define CHAR_CR 0x0D
#define CHAR_LF 0x0A
#define CHAR_ESC 0x1B
#define NEXT_LINE (char*)"\r\n"
#define CURSOR (char*)">> "
//================================================================================================================================
// Lokale Variablen
//================================================================================================================================
uint16_t g_startMS;
static char data[200]; // Zwischenspeicher für die Befehlsdecodierung
static char rs232_buffer[50];
static uint8_t pointer=0; // Zeiger zu obiger Variable
static void (*callback_function)(char _data) = NULL; // Funktionszeiger auf eine Funktion, welche die Daten entgegen nimmt,
// und auf der Ausgabeschnittstelle ausgibt.
//================================================================================================================================
// Lokale Functionen
//================================================================================================================================
static void run_cmd(char *_data);
static char* get_next(char *_data);
static char to_uppercase (char _data);
static void print_char (char _data);
static void print_string (char* _data);
// Funktionen für Befehlsdecoder
static void cmd_help(const char* _data);
static void cmd_taster(const char* _data);
static void cmd_led_on(const char* _data);
static void cmd_led_off(const char* _data);
static void cmd_alert(const char* _data);
static void cmd_adc(const char* _data);
static void cmd_rotary(const char* _data);
//================================================================================================================================
// command-Tabelle
//================================================================================================================================
const struct {
const char cmd[20];
void (*funktion)(const char* _data);
const char info[40];
} command[] PROGMEM = {
{"HELP", &cmd_help, "Display this Help Menu"},
{"BUTTON", &cmd_taster, "Current State of the Buttons"},
{"LED_ON", &cmd_led_on, "Turn on the LED on position $LED"},
{"LED_OFF", &cmd_led_off, "Turn off the LED on position $LED"},
{"ADC", &cmd_adc, "Read the ADC output"},
{"ROTARY", &cmd_rotary, "Read the rotary encoder"},
{"ALERT", &cmd_alert, "RING THE ALTER!!!"},
};
//================================================================================================================================
// Funktion: line_interpreter_init
// Initialisierung des Line-Interpreters.
// Parameter: _ptr: Zeiger auf die Funktion, welche die einzelne Zeichen auf der Konsole ausgeben kann.
// Rückgabewert: keine
//================================================================================================================================
void line_interpreter_init(void (*_ptr)(char _data)){
callback_function = _ptr;
}
//================================================================================================================================
// Funktion: line_interpreter_get_data
// Dieser Funktion werden die Daten von der RS232 Schnittstelle übergeben. In dieser Funktion werden die Empfangen
// Zeichen zu einer Zeichenkette zusammengefügt, und wenn die ein Carryage-Return empfangen wurde, wird die
// Zeichenkette an den Decoder übergeben.
// Parameter: _char: Empfangenes Zeichen
// Rückgabewert: keine
//================================================================================================================================
void line_interpreter_get_data(char _char){
switch (_char){
case CHAR_BACKSPACE:
case CHAR_DEL:
if (pointer > 0){
pointer--; // Zeichen aus Zeichenkette entfernen
print_char (CHAR_BACKSPACE);
print_char (' ');
print_char (CHAR_BACKSPACE);
}
break;
case CHAR_CR: // Enter wurde gedrückt,
data[pointer] = 0; // Terminate String;
print_string(NEXT_LINE);
if (pointer>0){ // Wenn mindestens ein Zeichen empfangen wurde dann
run_cmd (data); // Empfangene Zeichenkette Ausweten
pointer = 0;
}
print_string (CURSOR);
break;
default: // Normales Zeichen empfangen.
_char = to_uppercase(_char); // Kleinbuchstaben zu Großbuchstaben wandeln
print_char(_char); // Empfangenes Zeichen Ausgeben
data[pointer++] = _char; // Empfangenes Zeichen in Zwischenspeicher speichern.
break;
}//end switch
}
//================================================================================================================================
// Funktion: Ausfuehren
// Diese Funktion überprüft das erste Wort in der Zeichenkette mit der Command-Tabelle und wenn es eine Über-
// einstimmung gibt, wird die entsprechende Funktion aufgerufen.
// Parameter: _string: Auszuwertende Zeichenkette
// Rückgabewert: keine
//================================================================================================================================
static void run_cmd (char *_string){
char *temp = 0;
uint8_t i;
void (*temp_func)(char* const _string);
temp = get_next(data);
for (i=0; i<COUNT_COMMANDS; i++){
if (strcmp_P(_string, command[i].cmd)==0){
memcpy_P(&temp_func, &command[i].funktion, sizeof (temp_func));
temp_func(temp);
break;
}
}
if (i==COUNT_COMMANDS){
sprintf_P (rs232_buffer, PSTR("COMMAND ERROR\r\n\r\n"));
print_string(rs232_buffer);
}
}
//================================================================================================================================
// Funktion: get_next
// Diese Funktion separiert den übergebenen String.
// Parameter: _data: Auszuwertende Zeichenkette
// Rückgabewert: keine
//================================================================================================================================
static char* get_next(char *_data){
char *temp = _data;
while (*temp != 0){
if (*temp==' '){
*temp = 0;
temp++;
break;
} else{
temp++;
}
}
return temp;
}
//================================================================================================================================
// Funktion: Grossbuchstaben
// Diese Funktion wandelt Kleinbuchstaben in Großbuchstaben.
// Parameter: _char: Auszuwertendes Zeichen
// Rückgabewert: Das eingegebene Zeichen als Großbuchstabe.
//================================================================================================================================
static char to_uppercase (char _char){
if ( (_char>='a') && (_char<='z') ){
_char -= 'a' - 'A';
}
return _char;
}
//================================================================================================================================
// Funktion: print_char
// Ausgabe eines Zeichens auf der Konsole.
// Parameter: _data: Zeichen, welches an die Callbackfunktion übergeben werden soll.
// Rückgabewert: keine
//================================================================================================================================
static void print_char (char _data){
if (callback_function != NULL){
callback_function(_data);
}
}
//================================================================================================================================
// Funktion: print_string
// Ausgabe eines Strings auf der Konsole.
// Parameter: _data: Zeichenkette
// Rückgabewert: keine
//================================================================================================================================
static void print_string (char* _data){
for(uint8_t i=0; i<200; i++) {
if(_data[i] == 0){
break;
}
print_char(_data[i]);
}
}
//================================================================================================================================
// Funktion: cmd_temp
// Hilfe Funktion. Gibt die Hilfe Tabelle aus.
// Parameter: _data: Zeichenkette mit Parametern des Befehls
// Rückgabewert: keine
//================================================================================================================================
static void cmd_help(const char* _data){
for (uint8_t i=0; i<COUNT_COMMANDS; i++){
strcpy_P(rs232_buffer, command[i].cmd);
print_string(rs232_buffer);
print_string((char*)" ");
strcpy_P(rs232_buffer, command[i].info);
print_string(rs232_buffer);
print_string(NEXT_LINE);
}
}
//================================================================================================================================
// Funktion: cmd_taster
// Kann verwendet werden, um den aktuellen Status der Taster abzufragen
// Parameter: _data: Zeichenkette mit Parametern des Befehls
// Rückgabewert: keine
//================================================================================================================================
static void cmd_taster(const char* _data){
print_string("Taster 1: ");
print_string(Taster1_get() ? "1" : "0");
print_string(NEXT_LINE);
print_string("Taster 2: ");
print_string(Taster2_get() ? "1" : "0");
print_string(NEXT_LINE);
print_string("Taster 3: ");
print_string(Taster3_get() ? "1" : "0");
print_string(NEXT_LINE);
print_string("Taster 4: ");
print_string(Taster4_get() ? "1" : "0");
print_string(NEXT_LINE);
}
//================================================================================================================================
// Funktion: cmd_led_on
// Kann verwendet werden, um eine LED einzuschalten
// Parameter: _data: Zeichenkette mit Parametern des Befehls.
// Hier: Die ID der LED, welche eingeschaltet werden soll
// Rückgabewert: keine
//================================================================================================================================
static void cmd_led_on(const char* _data){
switch(_data[0]){
case '1': Led1_On(); break;
case '2': Led2_On(); break;
case '3': Led3_On(); break;
case '4': Led4_On(); break;
case '5': Led5_On(); break;
case '6': Led6_On(); break;
case '7': Led7_On(); break;
case '8': Led8_On(); break;
default:
print_string("Led could not be found.");
print_string(NEXT_LINE);
}
}
//================================================================================================================================
// Funktion: cmd_led_off
// Kann verwendet werden, um eine LED auszuschalten
// Parameter: _data: Zeichenkette mit Parametern des Befehls.
// Hier: Die ID der LED, welche ausgeschaltet werden soll
// Rückgabewert: keine
//================================================================================================================================
static void cmd_led_off(const char* _data){
switch(_data[0]){
case '1': Led1_Off(); break;
case '2': Led2_Off(); break;
case '3': Led3_Off(); break;
case '4': Led4_Off(); break;
case '5': Led5_Off(); break;
case '6': Led6_Off(); break;
case '7': Led7_Off(); break;
case '8': Led8_Off(); break;
default:
print_string("LED could not be found.");
print_string(NEXT_LINE);
}
}
//================================================================================================================================
// Funktion: cmd_alert
// Lässt die Roten LEDs blinken und gibt einen Alarm text aus.
// Parameter: _data: Zeichenkette mit Parametern des Befehls.
// Rückgabewert: keine
//================================================================================================================================
static void cmd_alert(const char* _data){
uint8_t isOn = 0;
while (1)
{
if(Timer_getTick() - g_startMS >= 250){
g_startMS = Timer_getTick();
print_string("ALERT!!!");
if(!isOn){
isOn = 1;
Led6_On();
Led7_On();
Led8_On();
} else {
isOn = 0;
Led6_Off();
Led7_Off();
Led8_Off();
}
}
}
}
//================================================================================================================================
// Funktion: cmd_adc
// Wird verwendet um die Daten von Poti und LM35 zu lesen
// Parameter: _data: Zeichenkette mit Parametern des Befehls.
//
// Rückgabewert: keine
//================================================================================================================================
static void cmd_adc(const char* _data){
char potiData[50];
char lm35Data[50];
int loopInterval = 500;
int lm35;
do
{
if(Timer_getTick() - g_startMS >= loopInterval){
g_startMS=Timer_getTick();
/* Print Potentiometer info */
sprintf(potiData, "Poti: %d", adc_get_poti());
//sprintf(potiData, "Poti: %f", (adc_get_poti() / 1023.0)); // uses floats - disabled for performance reasons.
print_string(potiData);
print_string(NEXT_LINE);
/* Print LM35 temperature */
/* calculate the temperature from the ADC reading */
lm35 = (int)(adc_get_LM35() * 5000.0 / 1024 / 10);
sprintf(lm35Data, "LM35: %d\xC2\xB0 C", lm35);
//sprintf(lm35Data, "LM35: %f\xC2\xB0 C", (adc_get_LM35() * (5000 / 1024.0) / 10)); // uses floats - disabled for performance reasons.
print_string(lm35Data);
print_string(NEXT_LINE);
print_string("----------");
print_string(NEXT_LINE);
}
} while (strcmp(_data, "R") == 0 ? 1 : 0); /* Check if repeat flag is set*/
}
//================================================================================================================================
// Funktion: cmd_rotary
// Wird verwendet um die Bewegung von Dregeber zu lesen
// Parameter: _data: Zeichenkette mit Parametern des Befehls.
//
// Rückgabewert: keine
//================================================================================================================================
static void cmd_rotary(const char* _data){
char encoderText[50];
int16_t tmp=-32768, cnt=0;
do
{
cnt = drehgeber_get();
if(cnt != tmp)
{
sprintf(encoderText, "Rotary Encoder: %d", drehgeber_get());
print_string(encoderText);
print_string(NEXT_LINE);
tmp = cnt;
}
} while (strcmp(_data, "R") == 0 ? 1 : 0); /* Check if repeat flag is set*/
}

View File

@ -28,85 +28,57 @@
<ResetRule>0</ResetRule>
<eraseonlaunchrule>0</eraseonlaunchrule>
<EraseKey />
<avrtool>com.atmel.avrdbg.tool.stk500</avrtool>
<avrtool>com.atmel.avrdbg.tool.simulator</avrtool>
<avrtoolserialnumber />
<avrdeviceexpectedsignature>0x1E9705</avrdeviceexpectedsignature>
<com_atmel_avrdbg_tool_simulator>
<ToolOptions>
<ToolOptions xmlns="">
<InterfaceProperties>
</InterfaceProperties>
<InterfaceName>
</InterfaceName>
</ToolOptions>
<ToolType>com.atmel.avrdbg.tool.simulator</ToolType>
<ToolNumber>
<ToolType xmlns="">com.atmel.avrdbg.tool.simulator</ToolType>
<ToolNumber xmlns="">
</ToolNumber>
<ToolName>Simulator</ToolName>
<ToolName xmlns="">Simulator</ToolName>
</com_atmel_avrdbg_tool_simulator>
<AsfFrameworkConfig>
<framework-data xmlns="">
<options />
<configurations />
<files />
<documentation help="" />
<offline-documentation help="" />
<dependencies>
<content-extension eid="atmel.asf" uuidref="Atmel.ASF" version="3.49.1" />
</dependencies>
</framework-data>
</AsfFrameworkConfig>
<avrtoolinterface>ISP</avrtoolinterface>
<com_atmel_avrdbg_tool_stk500>
<ToolOptions>
<InterfaceProperties>
<IspClock>115200</IspClock>
</InterfaceProperties>
<InterfaceName>ISP</InterfaceName>
</ToolOptions>
<ToolType>com.atmel.avrdbg.tool.stk500</ToolType>
<ToolNumber>
</ToolNumber>
<ToolName>STK500</ToolName>
</com_atmel_avrdbg_tool_stk500>
<avrtoolinterfaceclock>115200</avrtoolinterfaceclock>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)' == 'Release' ">
<ToolchainSettings>
<AvrGcc>
<avrgcc.common.Device>-mmcu=atmega1284p -B "%24(PackRepoDir)\atmel\ATmega_DFP\1.6.364\gcc\dev\atmega1284p"</avrgcc.common.Device>
<avrgcc.common.optimization.RelaxBranches>True</avrgcc.common.optimization.RelaxBranches>
<avrgcc.common.outputfiles.hex>True</avrgcc.common.outputfiles.hex>
<avrgcc.common.outputfiles.lss>True</avrgcc.common.outputfiles.lss>
<avrgcc.common.outputfiles.eep>True</avrgcc.common.outputfiles.eep>
<avrgcc.common.outputfiles.srec>True</avrgcc.common.outputfiles.srec>
<avrgcc.common.outputfiles.usersignatures>False</avrgcc.common.outputfiles.usersignatures>
<avrgcc.compiler.general.ChangeDefaultCharTypeUnsigned>True</avrgcc.compiler.general.ChangeDefaultCharTypeUnsigned>
<avrgcc.compiler.general.ChangeDefaultBitFieldUnsigned>True</avrgcc.compiler.general.ChangeDefaultBitFieldUnsigned>
<avrgcc.compiler.symbols.DefSymbols>
<ListValues>
<Value>NDEBUG</Value>
</ListValues>
</avrgcc.compiler.symbols.DefSymbols>
<avrgcc.compiler.directories.IncludePaths>
<ListValues>
<Value>%24(PackRepoDir)\atmel\ATmega_DFP\1.6.364\include\</Value>
</ListValues>
</avrgcc.compiler.directories.IncludePaths>
<avrgcc.compiler.optimization.level>Optimize for size (-Os)</avrgcc.compiler.optimization.level>
<avrgcc.compiler.optimization.PackStructureMembers>True</avrgcc.compiler.optimization.PackStructureMembers>
<avrgcc.compiler.optimization.AllocateBytesNeededForEnum>True</avrgcc.compiler.optimization.AllocateBytesNeededForEnum>
<avrgcc.compiler.warnings.AllWarnings>True</avrgcc.compiler.warnings.AllWarnings>
<avrgcc.linker.libraries.Libraries>
<ListValues>
<Value>libm</Value>
</ListValues>
</avrgcc.linker.libraries.Libraries>
<avrgcc.assembler.general.IncludePaths>
<ListValues>
<Value>%24(PackRepoDir)\atmel\ATmega_DFP\1.6.364\include\</Value>
</ListValues>
</avrgcc.assembler.general.IncludePaths>
</AvrGcc>
<avrgcc.common.Device>-mmcu=atmega1284p -B "%24(PackRepoDir)\atmel\ATmega_DFP\1.6.364\gcc\dev\atmega1284p"</avrgcc.common.Device>
<avrgcc.common.optimization.RelaxBranches>True</avrgcc.common.optimization.RelaxBranches>
<avrgcc.common.outputfiles.hex>True</avrgcc.common.outputfiles.hex>
<avrgcc.common.outputfiles.lss>True</avrgcc.common.outputfiles.lss>
<avrgcc.common.outputfiles.eep>True</avrgcc.common.outputfiles.eep>
<avrgcc.common.outputfiles.srec>True</avrgcc.common.outputfiles.srec>
<avrgcc.common.outputfiles.usersignatures>False</avrgcc.common.outputfiles.usersignatures>
<avrgcc.compiler.general.ChangeDefaultCharTypeUnsigned>True</avrgcc.compiler.general.ChangeDefaultCharTypeUnsigned>
<avrgcc.compiler.general.ChangeDefaultBitFieldUnsigned>True</avrgcc.compiler.general.ChangeDefaultBitFieldUnsigned>
<avrgcc.compiler.symbols.DefSymbols>
<ListValues>
<Value>NDEBUG</Value>
</ListValues>
</avrgcc.compiler.symbols.DefSymbols>
<avrgcc.compiler.directories.IncludePaths>
<ListValues>
<Value>%24(PackRepoDir)\atmel\ATmega_DFP\1.6.364\include\</Value>
</ListValues>
</avrgcc.compiler.directories.IncludePaths>
<avrgcc.compiler.optimization.level>Optimize for size (-Os)</avrgcc.compiler.optimization.level>
<avrgcc.compiler.optimization.PackStructureMembers>True</avrgcc.compiler.optimization.PackStructureMembers>
<avrgcc.compiler.optimization.AllocateBytesNeededForEnum>True</avrgcc.compiler.optimization.AllocateBytesNeededForEnum>
<avrgcc.compiler.warnings.AllWarnings>True</avrgcc.compiler.warnings.AllWarnings>
<avrgcc.linker.libraries.Libraries>
<ListValues>
<Value>libm</Value>
</ListValues>
</avrgcc.linker.libraries.Libraries>
<avrgcc.assembler.general.IncludePaths>
<ListValues>
<Value>%24(PackRepoDir)\atmel\ATmega_DFP\1.6.364\include\</Value>
</ListValues>
</avrgcc.assembler.general.IncludePaths>
</AvrGcc>
</ToolchainSettings>
</PropertyGroup>
<PropertyGroup Condition=" '$(Configuration)' == 'Debug' ">
@ -151,18 +123,6 @@
</ToolchainSettings>
</PropertyGroup>
<ItemGroup>
<Compile Include="adc.c">
<SubType>compile</SubType>
</Compile>
<Compile Include="adc.h">
<SubType>compile</SubType>
</Compile>
<Compile Include="cli.c">
<SubType>compile</SubType>
</Compile>
<Compile Include="cli.h">
<SubType>compile</SubType>
</Compile>
<Compile Include="Led.c">
<SubType>compile</SubType>
</Compile>
@ -172,42 +132,12 @@
<Compile Include="main.c">
<SubType>compile</SubType>
</Compile>
<Compile Include="rotaryEncoder.c">
<SubType>compile</SubType>
</Compile>
<Compile Include="rotaryEncoder.h">
<SubType>compile</SubType>
</Compile>
<Compile Include="StopLight.c">
<SubType>compile</SubType>
</Compile>
<Compile Include="StopLight.h">
<SubType>compile</SubType>
</Compile>
<Compile Include="Tasks.c">
<SubType>compile</SubType>
</Compile>
<Compile Include="Tasks.h">
<SubType>compile</SubType>
</Compile>
<Compile Include="Taster.c">
<SubType>compile</SubType>
</Compile>
<Compile Include="Taster.h">
<SubType>compile</SubType>
</Compile>
<Compile Include="Timer.c">
<SubType>compile</SubType>
</Compile>
<Compile Include="Timer.h">
<SubType>compile</SubType>
</Compile>
<Compile Include="uart.c">
<SubType>compile</SubType>
</Compile>
<Compile Include="uart.h">
<SubType>compile</SubType>
</Compile>
</ItemGroup>
<Import Project="$(AVRSTUDIO_EXE_PATH)\\Vs\\Compiler.targets" />
</Project>

View File

@ -1,80 +1,62 @@
#include <avr/io.h>
void
Led_init (void){
DDRB = 0xFF; /* Set all bits in the B Data-Direction Register to output */
PORTB = 0x00; /* Set all bits in the PORT B Register to low to turn all LEDs off */
void Led_init(void){
DDRB = 0xFF; // Set all bits in the B Data-Direction Register to output
PORTB = 0x00; // Set all bits in the PORT B Register to low to turn all LEDs off
}
void
Led1_On (void){
PORTB |= (1<<7); /* Set the bit for LED_1 to hight to turn it on */
void Led1_On(void){
PORTB |= (1<<7); // Set the bit for LED_1 to hight to turn it on
}
void
Led1_Off (void){
PORTB &= ~(1<<7); /* Set the bit for LED_1 to low to turn it off */
void Led1_Off(void){
PORTB &= ~(1<<7); // Set the bit for LED_1 to low to turn it off
}
void
Led2_On (void){
void Led2_On(void){
PORTB |= (1<<6);
}
void
Led2_Off (void){
void Led2_Off(void){
PORTB &= ~(1<<6);
}
void
Led3_On (void){
void Led3_On(void){
PORTB |= (1<<5);
}
void
Led3_Off (void){
void Led3_Off(void){
PORTB &= ~(1<<5);
}
void
Led4_On (void){
void Led4_On(void){
PORTB |= (1<<4);
}
void
Led4_Off (void){
void Led4_Off(void){
PORTB &= ~(1<<4);
}
void
Led5_On (void){
void Led5_On(void){
PORTB |= (1<<3);
}
void
Led5_Off (void){
void Led5_Off(void){
PORTB &= ~(1<<3);
}
void
Led6_On (void){
void Led6_On(void){
PORTB |= (1<<2);
}
void
Led6_Off (void){
void Led6_Off(void){
PORTB &= ~(1<<2);
}
void
Led7_On (void){
void Led7_On(void){
PORTB |= (1<<1);
}
void
Led7_Off (void){
void Led7_Off(void){
PORTB &= ~(1<<1);
}
void
Led8_On (void){
void Led8_On(void){
PORTB |= (1<<0);
}
void
Led8_Off (void){
void Led8_Off(void){
PORTB &= ~(1<<0);
}

View File

@ -5,33 +5,33 @@
/*
Initialisiert die Hardware für die Led
*/
void Led_init (void);
void Led_init(void);
/*
Funktionen schalten entsprechende LEDs ein oder aus.
*/
void Led1_On (void);
void Led1_Off (void);
void Led1_On(void);
void Led1_Off(void);
void Led2_On (void);
void Led2_Off (void);
void Led2_On(void);
void Led2_Off(void);
void Led3_On (void);
void Led3_Off (void);
void Led3_On(void);
void Led3_Off(void);
void Led4_On (void);
void Led4_Off (void);
void Led4_On(void);
void Led4_Off(void);
void Led5_On (void);
void Led5_Off (void);
void Led5_On(void);
void Led5_Off(void);
void Led6_On (void);
void Led6_Off (void);
void Led6_On(void);
void Led6_Off(void);
void Led7_On (void);
void Led7_Off (void);
void Led7_On(void);
void Led7_Off(void);
void Led8_On (void);
void Led8_Off (void);
void Led8_On(void);
void Led8_Off(void);
#endif /* LED_H_ */

View File

@ -1,252 +0,0 @@
/*
* StopLight.c
*
* Created: 11/11/2021 16:26:22
* Author: n0x
*/
#include "Led.h";
#include "Taster.h";
#include "Timer.h"
#include "StopLight.h"
/* enums */
enum{
S1_GREEN, S1_YELLOW, S1_RED, S1_RED_YELLOW,
S2_GREEN, S2_YELLOW, S2_RED, S2_RED_YELLOW,
INIT, WAIT
} StoplightState = INIT; /* Emus for the stoplight task (task 3) */
/* Programmieren eine Ampelsteuerung auf einer Straßenkreuzung */
/* Stoplight and the corresponding LEDs
| GREEN | YELLOW | RED
----------------------------------
SL 1 | Led1 | Led4 | Led6
SL 2 | Led2 | Led5 | Led7
*/
uint16_t g_startMS;
int delayShort = 5000;
int delayLong = 30000;
/* Task 3 (2021-11-11) */
void
runStopLightTask1()
{
switch(StoplightState){
case INIT:
setS1ToGreen();
setS2ToRed();
if(Timer_getTick() - g_startMS >= delayLong) {
g_startMS=Timer_getTick();
StoplightState = S1_YELLOW;
}
break;
case S1_YELLOW:
setS1ToYellow();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S1_RED;
}
break;
case S1_RED:
setS1ToRed();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S2_RED_YELLOW;
}
break;
case S2_RED_YELLOW:
setS2ToRedYellow();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S2_GREEN;
}
break;
case S2_GREEN:
setS2ToGreen();
if(Timer_getTick() - g_startMS >= delayLong) {
g_startMS=Timer_getTick();
StoplightState = S2_YELLOW;
}
break;
case S2_YELLOW:
setS2ToYellow();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S2_RED;
}
break;
case S2_RED:
setS2ToRed();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S1_RED_YELLOW;
}
break;
case S1_RED_YELLOW:
setS1ToRedYellow();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S1_GREEN;
}
break;
case S1_GREEN:
setS1ToGreen();
if(Timer_getTick() - g_startMS >= delayLong) {
g_startMS=Timer_getTick();
StoplightState = S1_YELLOW;
}
break;
}
}
void
runStopLightTask2(void)
{
switch(StoplightState){
case INIT:
setS1ToGreen();
setS2ToRed();
StoplightState = WAIT;
break;
case WAIT:
if(Taster1_get()) {
g_startMS=Timer_getTick();
StoplightState = S1_YELLOW;
}
break;
case S1_YELLOW:
setS1ToYellow();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S1_RED;
}
break;
case S1_RED:
setS1ToRed();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S2_GREEN;
}
break;
case S2_GREEN:
setS2ToGreen();
if(Timer_getTick() - g_startMS >= delayLong) {
g_startMS=Timer_getTick();
StoplightState = S2_RED;
}
break;
case S2_RED:
setS2ToRed();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S1_RED_YELLOW;
}
break;
case S1_RED_YELLOW:
setS1ToRedYellow();
if(Timer_getTick() - g_startMS >= delayShort) {
g_startMS=Timer_getTick();
StoplightState = S1_GREEN;
}
break;
case S1_GREEN:
setS1ToGreen();
if(Timer_getTick() - g_startMS >= delayLong) {
g_startMS=Timer_getTick();
StoplightState = WAIT;
}
break;
}
}
/* LED Helper methods to keep the code a little cleaner */
void setS1ToGreen(void)
{
Led1_On();
Led4_Off();
Led6_Off();
}
void setS1ToYellow(void)
{
Led1_Off();
Led4_On();
Led6_Off();
}
void setS1ToRedYellow(void)
{
Led1_Off();
Led4_On();
Led6_On();
}
void setS1ToRed(void)
{
Led1_Off();
Led4_Off();
Led6_On();
}
void setS2ToGreen(void)
{
Led2_On();
Led5_Off();
Led7_Off();
}
void setS2ToYellow(void)
{
Led2_Off();
Led5_On();
Led7_Off();
}
void setS2ToRedYellow(void)
{
Led2_Off();
Led5_On();
Led7_On();
}
void setS2ToRed(void)
{
Led2_Off();
Led5_Off();
Led7_On();
}
//*/

View File

@ -1,24 +0,0 @@
/*
* StopLight.h
*
* Created: 11/11/2021 16:24:16
* Author: n0x
*/
#ifndef STOPLIGHT_H_
#define STOPLIGHT_H_
void runStopLightTask1(void);
void runStopLightTask2(void);
void setS1ToGreen(void);
void setS1ToYellow(void);
void setS1ToRedYellow(void);
void setS1ToRed(void);
void setS2ToGreen(void);
void setS2ToYellow(void);
void setS2ToRedYellow(void);
void setS2ToRed(void);
#endif /* STOPLIGHT_H_ */

View File

@ -1,74 +0,0 @@
/*
* Tasks.c
*
* Created: 17/11/2021 16:58:20
* Author: n0x
*/
#include "Led.h"
#include "Timer.h"
#include "Taster.h"
#include <util/delay.h>
int g_counter = 0;
uint8_t g_ledStatus = 0;
uint16_t g_startMS;
void
initTasks (void){
g_startMS=Timer_getTick();
}
/* Task 1 (2021-10-21) */
void
runningLight (void)
{
_delay_ms(100);
/* Programmieren Sie ein Lauflicht. Nutzen Sie dazu die in „Led.h“ deklarierten
* Funktionen.
* 2.Schreiben Sie ein Programm mit folgenden Funktionen:
* Wenn Taste 1 gedrückt wird, wird die Variable Counter inkrementiert.
* Wird Taste 2 gedrückt wird, wird die Variable Counter dekrementiert.
* Variable Counter soll sich dabei zwischen 0 und 8 bewegen.
* Der Inhalt des Wertes soll mit Hilfe der LEDs angezeigt werden.
* 0 = keine LED an, 1 = LED1 an, 2 = LED1+LED2 an, usw.
* 8 = alle LEDs an.
*/
/* Check if counter needs to be incremented */
if (Taster1_get()) g_counter++;
/* Check if counter needs to be decremented */
if (Taster2_get()) g_counter--;
/* Keep counter within boundaries (0-8) */
g_counter = (g_counter + 9) % 9;
/* Set the LEDs according to the counter */
g_counter >= 1 ? Led1_On() : Led1_Off();
g_counter >= 2 ? Led2_On() : Led2_Off();
g_counter >= 3 ? Led3_On() : Led3_Off();
g_counter >= 4 ? Led4_On() : Led4_Off();
g_counter >= 5 ? Led5_On() : Led5_Off();
g_counter >= 6 ? Led6_On() : Led6_Off();
g_counter >= 7 ? Led7_On() : Led7_Off();
g_counter >= 8 ? Led8_On() : Led8_Off();
}
/* Task 2 (2021-10-28) */
void
blinkLedWithTimer (void)
{
if(Timer_getTick() - g_startMS >= 1000) { /* Wait 1000ms before switching LED1 */
g_startMS=Timer_getTick();
/* Flip-Flop LED to on/off */
if(g_ledStatus % 2 == 0){
Led1_On();
} else {
Led1_Off();
}
g_ledStatus++;
}
}

View File

@ -1,16 +0,0 @@
/*
* Tasks.h
*
* Created: 17/11/2021 16:58:04
* Author: n0x
*/
#ifndef TASKS_H_
#define TASKS_H_
void initTasks(void);
void blinkLedWithTimer(void);
void runningLight(void);
#endif /* TASKS_H_ */

View File

@ -1,43 +1,22 @@
#include <avr/io.h>
void
Taster_init (void){
DDRD &= ~(0b111<<5); /* Set bit 5-7 of Data Direction Register D as input */
DDRC &= ~(1<<2); /* Set bit 2 of Data Direction Register C as input */
void Taster_init(void){
DDRD &= ~(7<<5); // Set bit 5-7 of Data Direction Register D as input
DDRC &= ~(1<<2); // Set bit 2 of Data Direction Register B as input
PORTD |= (0b111<<5); /* Initialize bit 5-7 of PORTD as for pull up resistor */
PORTC |= (1<<PINC2); /* Initialize bit 2 of PORTC as for pull up resistor */
/** Disable JTAG so Pin 2 of PORTC can be used as a GPIO
* Command needs to be run twice - see MCU Control Register Description (23.8.1)
* Bits 7 JTD: JTAG Interface Disable
* [..] The application software must write this bit to the desired value
* twice within four cycles to change its value. [...]
*/
MCUCR |= (1<<JTD);
MCUCR |= (1<<JTD);
PORTD &= ~(7<<5); // Initialize bit 5-7 of PORTD as low
PORTC &= ~(1<<2); // Initialize bit 2 of PORTC as low
}
uint8_t
Taster1_get (void){
/* Check if pin is low
-> low active pin
-> button is pressed
-> return 1 */
return ((PIND & (1<<PIND7)) == 0);
uint8_t Taster1_get(void){
return PORTD&(1<<7);
}
uint8_t
Taster2_get (void){
return ((PIND & (1<<PIND6)) == 0);
uint8_t Taster2_get(void){
return PORTD&(1<<6);
}
uint8_t
Taster3_get (void){
return ((PIND & (1<<PIND5)) == 0);
uint8_t Taster3_get(void){
return PORTD&(1<<5);
}
uint8_t
Taster4_get (void){
return ((PINC & (1<<PINC2)) == 0);
uint8_t Taster4_get(void){
return PORTC&(1<<2);
}

View File

@ -6,16 +6,16 @@
/*
Initialisiert die Hardware für die Taster
*/
void Taster_init (void);
void Taster_init(void);
/*
Gibt den aktuellen Status der Tasten aus.
Rückgabewert 0 = Taster nicht gedr<EFBFBD>ckt, 1 = Taster gedr<EFBFBD>ckt.
*/
uint8_t Taster1_get (void);
uint8_t Taster2_get (void);
uint8_t Taster3_get (void);
uint8_t Taster4_get (void);
uint8_t Taster1_get(void);
uint8_t Taster2_get(void);
uint8_t Taster3_get(void);
uint8_t Taster4_get(void);
#endif /* TASTER_H_ */

View File

@ -1,44 +0,0 @@
/*
* Timer.c
*
* Created: 28/10/2021 17:51:29
* Author: n0x
*/
#include <avr/io.h>
#include <avr/interrupt.h>
volatile uint16_t cntr = 0;
void
Timer_init (void){
TCCR0A |= (1<<WGM01); /* Set WGM01 to high to enable CTC mode */
TCCR0B |= (3<<CS00); /* Set the clock select bit to pre-scaler 3
16MHz / 64 (pre-scaler 3) ==> 250KHz */
TIMSK0 |= (1<<OCIE0A); /* Set OCIE0A to high to rise an interrupt when the counter matches OCR0A */
OCR0A = 250 - 1; /* Set the Output Compare Register 0 A to 125 to trigger interrupt every 1ms
16MHz / 64 (pre-scaler 3) / (250 ) ==> 1KHz (1ms) */
/*
For internal 1MHz clock:
1MHz / 8 (pre-scaler 2) ==> 125 KHz
1MHz / 8 (pre-scaler 2) / 125 (OCR) ==> 1 KHz (1ms)
*/
}
uint16_t
Timer_getTick(void){
uint16_t tmp;
cli();
tmp = cntr;
sei();
return tmp;
}
ISR(TIMER0_COMPA_vect){
cntr++;
}

View File

@ -1,16 +0,0 @@
/*
* Timer.h
*
* Created: 28/10/2021 17:49:26
* Author: n0x
*/
#ifndef TIMER_H_
#define TIMER_H_
#include <avr/io.h>
void Timer_init(void);
uint16_t Timer_getTick(void);
#endif /* TIMER_H_ */

View File

@ -1,145 +0,0 @@
/*
* UART.c
*
* Created: 25/11/2021 16:26:10
* Author: n0x
*/
#include "UART.h"
/* create structs for TX and TX buffer */
CircularBuffer TxBuffer;
CircularBuffer* pTxBuffer = &TxBuffer;
CircularBuffer RxBuffer;
CircularBuffer* pRxBuffer = &RxBuffer;
volatile uint8_t TxActive;
void
uart_init(void) {
UBRR0 = 103; /* set BAUD rate to 9600 */
UCSR0C |=
(0<<UMSEL00)|(0<<UMSEL01)| /* Async UART */
(0<<UPM00)|(0<<UPM01)| /* Disable Parity */
(1<<UCSZ00)|(1<<UCSZ01)| /* 8 Bit */
(0<<USBS0); /* 1 Stopbit */
UCSR0B |=
(1<<TXEN0)|(1<<RXEN0)| /* enable send and receive */
(1<<RXCIE0); /* enable Receive interrupts */
/* Initiate read- and write-pointers with 0 */
pTxBuffer->Readpointer = 0;
pTxBuffer->Writepointer = 0;
pRxBuffer->Readpointer = 0;
pRxBuffer->Writepointer = 0;
}
/********Sending Data********/
void
uart_send_string(char* string) {
/* Take a whole string and transmit every char from it */
int i = 0;
while(string[i] != '\0'){
uart_send_byte(string[i]);
i++;
}
}
void
uart_send_byte(char c) {
/* Disable the TX Interrupt to prevent issues while writing to the send buffer*/
UCSR0B &= ~(1<<TXCIE0);
/* Check if a transmit is in progress
if yes -> write the byte to the buffer
if no -> write the byte to the UDR0 register and enable the transmit in progress flag
*/
if(TxActive){
pTxBuffer->data[pTxBuffer->Writepointer++] = c;
if (pTxBuffer->Writepointer>=SIZE_BUFFER){
pTxBuffer->Writepointer = 0;
}
} else {
TxActive = 1;
UDR0 = c;
}
/* Enable the TX Interrupt again*/
UCSR0B |= (1<<TXCIE0);
}
/* when data (a data frame) is to be send (written to UDR0) */
ISR(USART0_TX_vect) {
/* check if the read and write pointer of the send buffer are not aligned
if not aligned -> read the next byte and write it to UDR0 register
if aligned -> no more data to send, disable the send in progress flag */
if(pTxBuffer->Readpointer != pTxBuffer->Writepointer)
{
/* writing data to the register withing the interrupt will cause a new interrupt which then will repeat till no more data is to be read from the send buffer */
UDR0 = pTxBuffer->data[pTxBuffer->Readpointer++];
if(pTxBuffer->Readpointer >= SIZE_BUFFER){
pTxBuffer->Readpointer = 0;
}
} else {
TxActive = 0;
}
}
/*******Receiving Data*******/
uint8_t
uart_data_available(void) {
uint8_t dataAvailabel = 0;
/* Disable the RX Interrupt to prevent issues when checking if data is available */
UCSR0B &= ~(1<<RXCIE0);
/* check if read and write pointer are at different locations
if yes -> data is available and can be read */
if(pRxBuffer->Readpointer != pRxBuffer->Writepointer){
dataAvailabel = 1;
}
/* Enable the RX Interrupt again*/
UCSR0B |= (1<<RXCIE0);
return dataAvailabel;
}
char
uart_get_data(void) {
char data = 0;
/* Disable the RX Interrupt to prevent issues when reading out a char from the buffer */
UCSR0B &= ~(1<<RXCIE0);
/* check if read and write pointer are at different locations
if yes -> data is available and can be read */
if(pRxBuffer->Readpointer != pRxBuffer->Writepointer)
{
/* read a char from the buffer and increment the read pointer */
data = pRxBuffer->data[pRxBuffer->Readpointer++];
if(pRxBuffer->Readpointer >= SIZE_BUFFER){
pRxBuffer->Readpointer = 0;
}
}
/* Enable the RX Interrupt again*/
UCSR0B |= (1<<RXCIE0);
/* give back the read in character */
return data;
}
/* when data (a data frame) is received */
ISR(USART0_RX_vect) {
uint8_t status = UCSR0A;
uint8_t data = UDR0;
/* check status flags if data is correctly accessible */
if((status & ((1<<DOR0) | (1<<FE0))) == 0){
/* Save data to buffer and increment the write pointer */
pRxBuffer->data[pRxBuffer->Writepointer++] = data;
if(pRxBuffer->Writepointer >= SIZE_BUFFER) {
pRxBuffer->Writepointer = 0;
}
}
}

View File

@ -1,30 +0,0 @@
/*
* UART2.h
*
* Created: 25/11/2021 16:25:59
* Author: n0x
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#ifndef UART2_H_
#define UART2_H_
#define SIZE_BUFFER 500
typedef struct CircularBuffer CircularBuffer;
struct CircularBuffer{
volatile char data[SIZE_BUFFER];
volatile uint16_t Readpointer;
volatile uint16_t Writepointer;
};
void uart_init(void);
void uart_send_byte(char c);
void uart_send_string(char* string);
uint8_t uart_data_available(void);
char uart_get_data(void);
#endif /* UART2_H_ */

View File

@ -1,69 +0,0 @@
/*
* adc.c
*
* Created: 09/12/2021 16:31:16
* Author: n0x
*/
#include "adc.h"
#define myADC ((ADC_t*)(0x78))
void
adc_init(void)
{
myADC->uiADLAR = 0; /* Set ADLAR to 0 to not left adjust the presentation of the conversion result */
myADC->uiREFS = 0; /* Turn off reference Voltage */
myADC->uiADPS = 7; /* Set ADC Prescaler to 128 */
myADC->uiADIE = 1; /* Enable the ADC interrupt */
myADC->uiADATE = 0; /* Disable the ADC auto trigger */
myADC->uiADEN = 1; /* Enable ADC */
}
volatile int done = 1;
/* ADC 1 */
uint16_t
adc_get_poti(void)
{
uint16_t adc;
myADC->uiMUX = 1; /* Set ADMUX to access ADC channel 1 */
myADC->uiADSC = 1; /* Start the conversion */
done = 0; /* reset the done flag to false */
while(done == 0); /* Wait till conversion completes */
adc = myADC->uiADC;
return adc;
}
/* ADC 0 */
uint16_t
adc_get_LM35(void)
{
uint16_t adc;
//myADC->uiADIE = 0; /* Disable interrupt */
myADC->uiMUX = 0; /* Set ADMUX to access ADC channel 1 */
myADC->uiADSC = 1; /* Start the conversion */
done = 0; /* reset the done flag to false */
while(done == 0); /* Wait till conversion completes */
adc = myADC->uiADC;
//myADC->uiADIE = 1; /* Enable the interrupt again */
return adc;
}
ISR(ADC_vect){
done = 1; /* set the done flag to true */
}

View File

@ -1,46 +0,0 @@
/*
* adc.h
*
* Created: 09/12/2021 16:31:06
* Author: n0x
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#ifndef ADC_H_
#define ADC_H_
typedef struct ADC_t ADC_t;
struct ADC_t{
/* ADC Data */
uint16_t uiADC :16;
/* ADCSRA */
uint8_t uiADPS :3;
uint8_t uiADIE :1;
uint8_t uiADIF :1;
uint8_t uiADATE :1;
uint8_t uiADSC :1;
uint8_t uiADEN :1;
/* ADCSRB */
uint8_t uiADTS0 :1;
uint8_t uiADTS1 :1;
uint8_t uiADTS2 :1;
uint8_t nui2 :3;
uint8_t uiACME :1;
uint8_t nui1 :1;
/* ADMUX */
uint8_t uiMUX :5;
uint8_t uiADLAR :1;
uint8_t uiREFS :2;
};
void adc_init(void);
uint16_t adc_get_poti(void);
uint16_t adc_get_LM35(void);
#endif /* ADC_H_ */

View File

@ -1,8 +0,0 @@
#ifndef CLI_H_
#define CLI_H_
extern void line_interpreter_init(void (*_ptr)(char _data));
extern void line_interpreter_get_data(char _d);
#endif /* CLI_H_ */

View File

@ -7,62 +7,52 @@
#include "Led.h"
#include "Taster.h"
#include "Timer.h"
#include "Tasks.h"
#include "StopLight.h"
#include "uart.h"
#include "cli.h"
#include "adc.h"
#include "rotaryEncoder.h"
#include <avr/interrupt.h>
#define F_CPU 1000000
#include <util/delay.h>
#ifdef F_CPU
#define F_CPU 1000000
#endif
#include <stdio.h>
/* function declarations */
void buttonTest (void);
uint16_t g_startMS;
int
main (void)
int main(void)
{
sei();
/* Initialize the LEDs, Buttons, etc. */
Timer_init();
Taster_init();
// Initialize the LEDs and Buttons
Led_init();
initTasks();
Taster_init();
uart_init();
adc_init();
drehgeber_init();
line_interpreter_init(uart_send_byte);
uart_send_string("Welcome to the ATmega1284P CLI. Type HELP to display all options.\r\n");
int counter = 0;
while (1)
{
//blinkLedWithTimer();
_delay_ms(50);
if(uart_data_available()){
line_interpreter_get_data(uart_get_data());
}
/* Programmieren Sie ein Lauflicht. Nutzen Sie dazu die in „Led.h“ deklarierten
* Funktionen.
* 2.Schreiben Sie ein Programm mit folgenden Funktionen:
* Wenn Taste 1 gedrückt wird, wird die Variable Counter inkrementiert.
* Wird Taste 2 gedrückt wird, wird die Variable Counter dekrementiert.
* Variable Counter soll sich dabei zwischen 0 und 8 bewegen.
* Der Inhalt des Wertes soll mit Hilfe der LEDs angezeigt werden.
* 0 = keine LED an, 1 = LED1 an, 2 = LED1+LED2 an, usw.
* 8 = alle LEDs an.
*/
// Check if counter needs to be incremented
if (Taster1_get()) counter++;
// Check if counter needs to be decremented
if (Taster2_get()) counter--;
// Keep counter within boundaries (0-8)
counter = (counter + 9) % 9;
// Set the LEDs according to the counter
counter >= 1 ? Led1_On() : Led1_Off();
counter >= 2 ? Led2_On() : Led2_Off();
counter >= 3 ? Led3_On() : Led3_Off();
counter >= 4 ? Led4_On() : Led4_Off();
counter >= 5 ? Led5_On() : Led5_Off();
counter >= 6 ? Led6_On() : Led6_Off();
counter >= 7 ? Led7_On() : Led7_Off();
counter >= 8 ? Led8_On() : Led8_Off();
}
}
void
buttonTest (void)
{
Taster1_get() ? Led1_On() : Led1_Off();
Taster2_get() ? Led2_On() : Led2_Off();
Taster3_get() ? Led3_On() : Led3_Off();
Taster4_get() ? Led4_On() : Led4_Off();
}

View File

@ -1,140 +0,0 @@
/*
* rotaryEncoder.c
*
* Created: 16/12/2021 16:34:05
* Author: n0x
*/
#include "rotaryEncoder.h"
#define ROTA PORTC7 /* define Rotary Encoder Button A */
#define ROTB PORTC6 /* define Rotary Encoder Button B */
#define ROTBUTTON PORTC5
/* enums */
enum{
LEFT1, LEFT2, LEFT3, RIGHT1, RIGHT2, RIGHT3,
INIT, WAIT
} RotaryState = INIT; /* Enum for the rotary enc */
int16_t count;
void
drehgeber_init(void)
{
DDRC &= ~(7<<DDC5); /* Set bit 5-7 of Data Direction Register C as input */
PORTC |= (7<<PORTC5); /* Initialize bit 5-7 of PORTC as for pull up resistor */
/* With external interrupt */
PCICR |= (1<<PCIE2);
PCMSK2 |= (1<<PCINT23)|(1<<PCINT22);
}
ISR(PCINT2_vect)
{
drehgeber_process();
}
void
drehgeber_process(void)
{
/* calculate the value of Button A and B of rotary encoder */
uint8_t a, b, enc;
a = ((PINC & (1<<ROTA)) == 0);
b = ((PINC & (1<<ROTB)) == 0)<<1;
enc = a+b;
switch(RotaryState)
{
case INIT:
RotaryState = WAIT;
break;
case WAIT:
if(enc == 1)
{
RotaryState = LEFT1;
}
if(enc == 2)
{
RotaryState = RIGHT1;
}
break;
case LEFT1:
if(enc == 3)
{
RotaryState = LEFT2;
}
if(enc == 0)
{
RotaryState = WAIT;
}
break;
case LEFT2:
if(enc == 2)
{
RotaryState = LEFT3;
}
if(enc == 1)
{
RotaryState = LEFT1;
}
break;
case LEFT3:
if(enc == 0)
{
/* Increment counter and wait */
count++;
RotaryState = WAIT;
}
if(enc == 3)
{
RotaryState = LEFT2;
}
break;
case RIGHT1:
if(enc == 3)
{
RotaryState = RIGHT2;
}
if(enc == 0)
{
RotaryState = WAIT;
}
break;
case RIGHT2:
if(enc == 1)
{
RotaryState = RIGHT3;
}
if(enc == 2)
{
RotaryState = RIGHT1;
}
break;
case RIGHT3:
if(enc == 0)
{
/* Decrement counter and wait */
count--;
RotaryState = WAIT;
}
if(enc == 3)
{
RotaryState = RIGHT2;
}
break;
}
}
int16_t drehgeber_get(void)
{
return count;
}

View File

@ -1,19 +0,0 @@
/*
* rotaryEncoder.h
*
* Created: 16/12/2021 16:33:57
* Author: n0x
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#ifndef ROTARYENCODER_H_
#define ROTARYENCODER_H_
void drehgeber_init(void);
void drehgeber_process(void);
int16_t drehgeber_get(void);
#endif /* ROTARYENCODER_H_ */